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Results of direct numerical simulations of stably stratified, freely evolving, 
homogeneous turbulence are presented. An examination of initial data designed to 
give insight into laboratory flows suggests that the numerical simulations have a 
satisfactory degree of realism, insofar as statistical parameters such as total energy 
and length scales are concerned. The motion is decomposed into a stratified 
turbulence (vortical) component and a wave component. For initial-value problems 
similar to laboratory studies of stratified flows, the vortical component decays a t  a 
rate virtually identical to that of the non-buoyant case up to t = 6N-' (N is the 
BruntViiisala frequency), The decay rate decreases after this time, suggesting a 
kind of turbulence ' collapse '. The temperature structure that emerges clearly shows 
the development of the collapse stage of the flow, which is also diagnosed by the 
behaviour of parameters such as the Thorpe scale. 

We next examine the very small-Froude-number regime in order to understand 
possible universal aspects of the flow. An examination of various initial conditions 
with different proportions of stratified and wave components indicates a lack of 
universality. For initial data containing only vortical motion (motions derived from 
the vertical vorticity field), the vortical field tends to dominate. in subsequent 
evolution, at strong stratification. However, contrary to two-dimensional turbulence, 
the flow is more strongly dissipative than two-dimensional flows due to the frictional 
effect associated with layering. Other quantities examined are frequency spectra, and 
the probability distribution for vertical shear. The frequency spectra exhibit some 
features in common with spectra extracted from oceanographic data. 

1. Introduction 
Many laboratory experiments (see Hopfinger 1987 for a review) have examined the 

decay of three-dimensional turbulence in stably stratified fluids. These studies have 
shown that if the inertial forces are very small in comparison with buoyancy (small- 
Froude-number regime), the flow evolve towards a collapsed state in which internal 
gravity waves and stratified (quasi-two-dimensional) turbulence coexist. A theo- 
retical analysis developed by Riley, Metcalfe &, Weissman (1981) (hereafter referred 
to as RMW) and by Lilly (1983) suggested that stratified turbulence (also called the 
vortex or the potential vorticity component of the flow) could correspond to two- 
dimensional turbulence in almost independently evolving layers. However, the 
vertical variability of the vortieal component induces gravity waves and these, in 
turn, inject energy into the vortical mode through nonlinear interactions. The 
schematics of these interactions have been described by Riley (1985). Further 
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theoretical work by Herring & M6tais (1989) suggests that  the stratified component, 
through its vertical variability, does indeed activate the wave component; but the 
former becomes progressively more dominant as (stable) stratification increases. 
Moreover, there exists the possibility of non-wave generalizations of two-dimensional 
turbulence in the limit of very small Froude number by means of the balanced 
equations as proposed by McWilliams (1985). Thus, the major issues to understand 
are the interactions between stratified turbulence and gravity waves, the dynamics 
of stratified turbulence (the degree to  which ideas of two-dimensional cascade carry 
over the stratified component), and the role of vertical variability in providing a 
damping for the two-dimensional, vortical component. 

Direct numerical simulations of the decay of initially isotropic homogeneous 
turbulence in a Boussinesq fluid have been performed by RMW. Although they 
observed a wave-like behaviour in the flow, they stressed that no sharp transition 
occurs as the flow evolves from a fully turbulent and dissipative state to a stratified 
state. However, the Reynolds number was too low to allow for a long period of decay 
or comparisons with experiments (such as Itsweire, Helland & Van Atta 1986). The 
present paper focuses on direct numerical simulations of the decay of homogeneous 
stratified turbulence, but for Reynolds number comparable with experiments. We 
note that, with respect to  the major statistical descriptors of the flow, the direct 
numerical simulations and laboratory experiments are in fairly good agreement 
(53.1). Therefore, we argue that the physics of numerical turbulence has sufficient 
realism to use direct numerical simulations to  bring into direct scrutiny the nature 
of the flow’s collapsed phase (53.2). Section 3.3 is devoted to the decay of strongly 
stratified turbulence (small-Froude-number regime). Our results show that the 
statistical symmetry of the evolved state depends vitally on that of the initial data. 
Thus, for small Froude number, the flow evolves as stratified two-dimensional flow 
only if the initial wave component is small. Conversely, if the flow is initially wave 
dominated, it remains so throughout its decay. Further details concerning flow 
initially near equipartition are discussed in 53.3. 

2. Methodology 
2.1. Equations of motion and relevant dynamical degrees of freedom 

The velocity and density fields’ examined here satisfy the Boussinesq set : 

- -vv2  u = - V p - ( u . V ) u - z @ ,  
(:t 1 

( & K V ~ ) Q  =i ’Pw- (u .V)@,  

v - u  = 0. (3 1 
v and K are, respectively, the kinematic molecular viscosity and diffusivity. x , y , z  
is a right-handed Cartesian coordinate system with z directed in the vertical. 
8 is proportional to the density deviation p’ from the mean density profile ~ ( z )  ; 
0 = gp’/po, with po the volume-averaged value of p ( z )  and g the acceleration due 
to gravity (gravity vector : g = ( O , O ,  -9)) .  u = (u, v ,  w) and p‘ are homogeneous. The 
(constant) Brunt-Viiisala frequency is 
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Craya (1958) introduced a decomposition of fi(k) (written in Fourier space) into the 
orthogonal components 6, and 6,:  

with 

u,(k, t )  = $,(k,  t )  e,(k), (7)  

where e1W = (kxg) / l (kxg) l  (8) 

e,(k) = k x ( k  x g)/ lk x ( k  x g)l. (9) and 

Here k is the wavenumber vector. RMW noticed that for small amplitudes (linear 
theory), 6, (which has no vertical vorticity) satisfies the (linearized) propagation 
equation of internal gravity waves. By means of a suitable scale analysis of the 
equations of motion, (1)-(3) they indicated that a,, which is the horizontally non- 
divergent rotational part of the velocity field, could, in the limit of infinitely small 
Froude numbers, satisfy the two-dimensional Navier-Stokes equations but with an 
undetermined z-dependence. The situation here (at low Froude number) is analogous 
to the case of turbulence coexisting with acoustics (at low Mach number), with two- 
dimensional turbulence playing the role of turbulence in the turbulence-acoustic 
analogue. 

For invariantly identifying waves and turbulence, Ertel’s theorem provides a 
useful basis. This theorem states that (for non-dissipative and non-diffusive flows) 
the potential vorticity (I7 = (0. Vp)/p,) is conserved along fluid-parcel trajectories. 
Here, w is the absolute vorticity which includes possible solid-body rotation, and 
p = p+p’. Take the ‘vortical’ velocity such that its vorticity is normal to the 
constant-p surface, and the ‘wave’ as that component of u(x ,  t )  normal to the vortical 
component and with vorticity in the isopycnal surface (which together with 
the vortical component comprises an incompressible field). A formulation of the 
stratified turbulence problem along these lines has been introduced by Staquet & 
Riley (1989). In  such a description, the vortical component does not explicitly 
interact with the wave components. It does implicitly, though, since the billows in 
an isopycnal surface are determined by the amplitude of the waves. Such a 
description is, of course, formulated in an intrinsic Lagrangian frame, whereas that 
of q5,, q5, introduced above is Eulerian : ql1, q52 are, in fact, eigenmodes of the linear 
part of the problem. It can be an accurate means of identifying waves and turbulence 
only as N+ 00, in which case the two descriptions become identical. 

On the other hand, an appeal to Ertel’s theorem alone as the basis for discussing 
waves versus turbulence seems deficient in incorporating the wave-propagation 
aspects of flow, since it would seem that a proper definition of waves should include 
the density field, and its phase relative to the ‘wave’-component of the velocity. 
Furthermore, for unstratified flow, eventually q51 and q52 equipartition and the 
isopycnal surfaces become in time severely convoluted. One would not in this case 
claim that the vorticity in the isopycnal surface corresponds to waves. 

From these considerations we conclude that q5,,q5, should be regarded as an 
economical (and complete) Eulerian description of the flow, but not as an intrinsic 
method of identifying wave and vortical components. Only the limit N+ co, does it 
correspond to the Ertel’s description, and thus invariably identify ‘wave ’ and 
‘vortical ’ components of the flow. 

Finally, we note that (G1, a,) also represents a convenient representation of the 
turbulence, since for isotropic three-dimensional turbulence, we have @,(k)  = @,(k),  
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and both are independent of the direction of k. Also, stratification preserves 
axisymmetry, and the above decomposition serves as an economical description of 
the second-order velocity correlation tensor of axisymmetric turbulence (Herring 
1974; Lesieur 1987). This property is also useful in applying statistical theories of 
turbulence (two-point closures) to  the Boussinesq equations (M8tais et al. 1987). 

For convenience, we call @,(k) the intensity associated with q51 the 'vortex ' kinetic 
energy spectrum : 

and @,(k) the 'wave' kinetic energy spectrum. Here the brackets denote an ensemble 
average. We define the potential energy spectrum as 

@l(k) = (d:(k) dl(k)) (10) 

so that the total energy 61(t) + 62(t) +p(t) (where 61(t) = Q1 dk, etc.) is conserved 
by nonlinear terms in the equations of motion. 

2.2. Lengthscales ; Reynolds, Froude and Richardson number 
We define the horizontal integral scale as 

and the vertical integral scale as 

L" = ~ ~ Q d C ( q 5 1 ( ~ , ~ , % + ~ ) q 5 1 ( X , Y , % ) ) / ( q 5 ~ ) .  (13) 

These definitions (particularly (13)) are of course not unique (one could use in (13) 
q5z, or any linear combination of and q5z), but they are conventional (RMW) and 
seem appropriate for flow in which the horizontal motion field (and hence q51) 
dominates. Assuming that in the small scales the flow is isotropic with a dissipation 
rate of kinetic energy 6, Dougherty (1961) and Ozmidov (1965) derived a 
characteristic lengthscale of stratification by equating inertial time ( L ; / B ) ~  and the 
buoyant time N-' : 

L,  = ( € / N j ) t .  

An equivalent lengthscale (buoyancy lengthscale) can be defined by equating the 
vertical inertial time ( (Lb / (w2)%))  to N-' : 

L, = (w2) i /N.  (15) 

The largest vertical turbulent scale has been defined by Stillinger, Helland & Van 
Atta (1983) as 

L, = 2(Q2)i/2V2, 

and the classical Kolmogorov scale (balancing dissipative and inertial effects) is 
given by 

L,  = ( € / V 3 ) i .  

A lengthscale characteristic of vertical overturning in a stratified flow has been 
derived by Thorpe (1977). It is commonly used in discussions of oceanographic 
microstructure data (Dillon 1982) and laboratory measurements (Itsweire 1984), and 
is called the displacement scale or Thorpe's scale. To better understand its definition, 
consider an instantaneous sounding pi (z ) .  This may present convectively unstable 
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A4 
initial vertical profile p,(z) (-) is rearranged using Thorpe's technique 

each fluid particle of the new profile p,(z) ( .  . . . . )  is stable. 
SO that 

regions (see figure 1). Next rearrange the profile so that each fluid particle of the new 
profile p,(z) is stable and 

(18) s' Pi(z) dz = 1; Pn(z) dz, 
zb 

where zt-zb is the layer height. The Thorpe scale is then 

L, = (d ( z )Z ) i ,  

where d ( z )  is the distance each fluid particle has been displaced and the brackets 
denote vertical averaging. The minimal energy required to transform the initial 
profile into a stable profile (energy available for generating turbulence) is then 

To characterize flow stability, we define a Richardson number 

~i = iv/((au/az)2).  (21) 

(Note that this is a microscale quantity.) Next we introduce the Froude number 
which measures the relative importance of the inertial frequency and N. This is 
defined using the vertical integral scale L, and the horizontal velocity 

Fr = (u2)i/L,N. (22) 
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Run 

OA 
OB 
1A 
1B 
2A 
2B 
2c 
3A 
3B 
4A 
4B 

@,(to)  @$O) 

0.527 0.524 
0.527 0 
0.527 0.524 
0.527 0 
0.527 0.524 
0.527 0 
0 0.524 
0.527 0.524 
0.527 0 
0.527 0.524 
0.527 0 

W O )  

0.050 
0 
0 
0 
0 
0 
0 
0 
0 

11' 

0 
0 
0.98 
0.98 
2x 
2rr 
2x 
4x 
4x 

20x 
20n 

V 

0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 

K 

0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 

TABLE 1.  Parameters for the numerical experiments. For these runs, to = 0.685 

dt 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.005 
0.005 
0.001 
0.001 

3. Numerical experiments 
To solve (1)-(3), we use a pseudospectral numerical code (collocation method). For 

time discretization we use the leap-frog scheme (stabilized by periodic averaging) 
with a Crank-Nicholson treatment of viscous and conductive terms. Boundary 
conditions are periodic in the three directions: all scales of motion are explicitly 
calculated. This procedure has been extensively described by Orszag & Patterson 
(1972) and by RMW. We simulate the flow in a 643 periodic cubic box, which allows 
R, < 45, with R, the Taylor-microscale Reynolds number. Aliasing is handled by a 
spherical truncation in Fourier space of the computed fields at every time step with 
the ' 2 / 3 '  algorithm described by Patterson & Orszag (197 1). The leap-frog averaging 
period is every 50 time steps. 

To initialize our runs, we follow the Orszag & Patterson (1972) procedure of 
generating (u(x ,  0) ,  v(x ,  0) ,  w(x, 0)) as uncorrelated Gaussian data with prescribed 
spectra. For each Cartesian component, the spectrum is 

E(k)  = Ck4exp ( -2(k /k , ) ' ) ,  (23) 

where k, = 4.760 (peak in the spectrum), and C is such that (2) = (w') = (w ' )  = 1. 
Incompressibility is then imposed on u, w, w. In  order to match the experimental 
initial conditions, we first generate a three-dimensional isotropic turbulent field by 
running a non-buoyant calculation until to = 0.685 (the time unit is the initial 
turnover time of the largest simulated structures) and then switching on the 
buoyancy to the experimental value. (The time to allows the initially Gaussian I( to 
develop into a non-Gaussian field, typical of decaying turbulence.) The resulting 
velocity field is the initial field for all runs in this paper. The parameters of this and 
subsequent runs are described in table 1. 

3.1. Cornparisms with laboratory experiments 
To validate our numerical techniques, we chose the BrunbVaisala frequency N ,  
and the initial perturbation density field 8(x) in such a way that the initial values 
of kinetic energy, potential energy, and buoyancy flux (8w) are in the same ratio as 
in the laboratory experiment of Itsweire et al. (1986). The experiment with which we 
compare our simulation is freely evolving, unsheared, grid-generated turbulence in a 
ten-layer, closed-loop, salt-stratified water channel. An important difference between 
our simulations and the experiments is that the experimental Prandtl number is of 
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FIGURE 2. Time evolution of half the horizontal kinetic energy i((uz)+ (vz)) (----), vertical 
kinetic energy )(d) (-), and total potential energy P(t)  ( .  . . . . )  for run 1A (see table 1 ) .  The 
time is normalized by the Brunt-Vaisala frequency (N = 0.98). to is the time at which the 
stratification is turned on. A, 0 ,  and 0 are the corresponding evolutions obtained in the 
laboratory experiment by Itsweire et al. (1986). 

the order of 200 in salt water. This value is inaccessible numerically with the current 
resolutions. Our position here is that  the computational Prandtl number of order 
unity may perhaps give the same large-scale structures as a very high experimental 
value, since the large scales are determined by an effective eddy Prandtl number 
close to unity (actually x 0.6;  cf. Lesieur 1987). Another difference is that, behind 
the grid, R, x 60 while R,(t,) x 40 in the computations. We choose N = 0.98, so that 
Fr(t,) = 2.5 and Ri(t,) = 0.01. Other run parameters are shown in table 1. 

In  figures 2, 3 and 4 the time is normalized by N .  Figure 2 compares direct 
numerical simulations to the laboratory experiments of Itsweire et al. (1986). We 
show the time evolution of half the horizontal kinetic energy, a((uz) + (v2)), vertical 
kinetic energy, $(to2), and total potential energy &t). The numerical results show 
initially the vertical kinetic energy to be strongly damped by the stratification. 
Subsequently, i t  exhibits a periodic exchange with potential energy, with period 
nN-l. The horizontal kinetic energy does not exhibit any oscillations. Except for the 
initial growth of potential energy (which seems to  be numerically overestimated), 
agreement with the experiment is good : the discrepancies do not exceed x 20 Yo after 
the initial phase. 

The numerical simulations presented here are of course subject to uncertainties, as 
are the actual experiments of Itsweire et al. (1986). Of particular concern is the 
question of whether the combined errors between numerical simulations and 
experiments may accidentally induce a closer agreement. Although we have no direct 
data on this point, we conclude that this is not the case. First, the numerical errors 

5 FILM 202 
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FIGURE 3. Time evolution (normalized by N) of the normalized buoyancy flux 
(@w)/(@2)i(wa)i for run 1A compared to the experimental values by Itsweire et al. (1986) (A). 

bars are smaller than those reported by Schumann & Herring (1976) (since the 
present resolution is twice theirs). The errors in the experiments are estimated 
as about 12 YO (E. C. Itsweire, private communication), whereas those in the 
Schuman-Herring simulation are smaller (about 5 YO) ; thus the overlap of errors is 
not sufficient to explain the discrepancy between simulations and experiments. 

The time evolution of the normalized buoyancy flux (Ow>/((O2)f(w2)~) is plotted 
in figure 3. The computed flux undergoes a much stronger initial build up than that 
of the experiment. Then in both cases, because of internal wave, the flux exhibits 
periodic oscillations around zero (period x nil-'). These are much more strongly 
damped in the salt-stratified experiment, but recent stratified wind-tunnel grid- 
turbulence experiments performed by Lienhard (1988) show oscillations closer to the 
amplitude of the numerical simulations, suggesting that the stronger damping is 
attributable to Prandtl-number differences. 

In figure 4, we plot the time evolution of the lengthscales LK,L,,L,,L,, as 
previously defined. The numerical L, exhibits a value at its maximum larger than the 
experimental, as previously noticed for the potential energy. The experimental 
Kolmogorov scale is half as large as the numerical one, but both seem to follow a 
linear law with respect to N ( t - t o ) .  An extensive discussion of the evolution of these 
scales has been given by Gibson (1980), Dillon (1982), Stillinger et al. (1983), and 
Itsweire et al. (1986). 

Having seen the extent to which direct numerical simulation reproduces the 
experimental results, we next allowed the flow to decay for longer than in the 
experimental channel (which is limited by experimental accuracy) and examine 
various statistical quantities that are experimentally inaccessible. 
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2.2 

125 

- L, = 2(8')i/N* 

0 1 2 3 4 5 6 I 8 

N(t  - t o )  

FIGURE 4. Time evolution (normalized by N) of the length scales L,  (---), L,  (----), L, 
( . . . . . ) ,andL,( - ) ( see(14) , (15)  , (16),(17))forrun 1A. 0, O,V,andnaretheexperimental  
points extracted from Itsweire et al. (1986). 

3.2. Turbulence collapse 
Parallel to the preceding calculation (run 1A) where the initial conditions ( t  = t o )  
were isotropic, we have carried out another calculation (run 1B) with the velocity 
field projected a t  t = to onto the vector e, (such that S2(t0) = 0). Furthermore, for this 
second case, we took the potential energy P(to) = 0. Runs OA and OB parallel runs 1A 
and lB, but for the non-buoyant case (N = 0). 

Note that the above projection must, to a certain extent, affect the intermodal 
transfer, thereby temporarily decreasing higher-order measures of transfer such as 
kurtosis and skewness. However, our pimary goal here is to explore the effects of 
initial conditions on the late time characteristics for the flow. Our experiments 
(itemized in table 1) are thus designed to give a set of independent initial conditions 
rather than to represent fully evolved decaying turbulence. 

3.2.1. Energetics 1 

Figures 5 ( a )  and 5 ( b )  show Sl(t)  ('vortex' kinetic energy) in the stratified case 
(N = 0.98, runs 1A and 1B) compared to the non-buoyant case (N = 0, runs OA and 
OR), Sz(t) ('wave' kinetic energy), and P(t)  (potential energy) for runs 1A and 1B. 
(We recall that the time unit is the initial turnover time of the largest simulated 
structures.) The wave kinetic energy exhibits a periodic exchange with the potential 
energy, whose period is x d-', and, in the mean, the internal wave energy, as one 
could expect (Gill 1982), is equally divided between the kinetic and potential forms. 
In  case B, the wave kinetic energy and potential energy, initially zero, increase until 
they are equipartitioned. Then, both are dissipated at the same rate and exhibit 

5-2 
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10-51 
10-1 100 10' lo2 

FIGURE 5. (a )  Time evolution of the 'vortex' kinetic energy 6, (----) in the stratified case 
(N = 0.98, run 1A) compared to @, (---) obtained in a non-buoyant calculation with the same 
initial conditions (N = 0, run OA), 'wave' kinetic energy 6, (-, run lA) ,  and potential energy 
P (.  . . . . , run 1A). The time unit is the turnover time at t = 0 of the largest simulated structures. 
The initial turbulent velocity field is three-dimensional isotropic: $*(to) = az(t0). ( 5 )  Game as (a )  for 
runs 1B and OB: $,(to) is the same as (a), but $z(to)  = 0 (vortical initial conditions). 

t 

oscillations with amplitude severely reduced from those in the previous case. In 
both cases, vortex kinetic energy does not exhibit oscillations, suggesting weak inter- 
actions between wave and turbulence components. The vortex kinetic energy 
decay does not seem to be affected by the stratification at  the beginning of the 
evolution. The decay law is initially approximately t-1.56. An extensive discussion of 
these decay laws in the case of isotropic turbulence for the kinetic energy and the 
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passive-scalar variance (equivalent to the potential energy in the non-buoyant case) 
has been given by Herring et al. (1982). After the initial decay phase, a clear slow- 
down is observed in the decay rate for t, > 6N-', which could be the indication of a 
turbulence 'collapse' a t  time t,, Fr  x 0.27 and Ri x 2. The moving-grid experiment 
of Dickey & Mellor (1980) showed a similar clear break in the decay rate of the 
turbulence energy a t  an identical time and close to the present value of the Froude 
number. I n  case A, the wave energy (wave kinetic energy +potential energy) remains 
roughly equipartitioned (within statistical scatter) with vortex kinetic energy 
throughout the decay ; the proportion of vortex kinetic energy does not exceed 60 '30 
of the total energy. In  case B, the energy is a t  first equally partitioned between wave 
and vortex components of energy. After the transition, the proportion of vortex 
kinetic energy increases, reaching 87% a t  the end of the run. These calculations 
illustrate the lack of universality and a dependence on the initial conditions of 
stratified turbulence. We return to this point in more detail in $3.3, when discussing 
the very low-Froude-number regime. 

3.2.2. ~eng€hscales and Froude number 
Figure 6(a) ,  (b)  shows the time evolution of the Kolmogorov scale L,, the Ozmidov 

scale L,, the horizontal integral scale L,, the vertical integral scale L,, and the 
Thorpe scale L, for runs 1A and 1B. The collapse time seems to coincide with the time 
at which the Ozmidov and Kolmogorov scales are equal; i.e. all the turbulent scales 
are influenced by buoyancy. From the beginning of the decay (Fr x l), stratification 
enhances the growth of the horizontal integral scale as noticed by RMW. The vertical 
integral scale seems to be frozen by the stratification and varies only slightly around 
its initial value until it is caught by the Kolmogorov scale ; afterwards they remain 
comparable. The Thorpe scale catches up with the Ozmidov scale and then decays a t  
the same rate. At the time of collapse, when vertical overturning no longer occurs, 
the Thorpe scale decreases much more rapidly. When L, reaches its maximum, the 
energy Pa, (see (20)) is only 33% of the potential energy in case A and 16'30 in 
case B. 

The course of ;Fr(t) for runs 1A and 1B is shown in figure 7. For both runs, the 
initial Fr  z 1, and for both cases, Fr( t )  evolves similarly (Fr x 0.07 a t  large t ) .  It is 
possible that the small pulse here in 1A at t N 5 is an indicator of the collapse noted 
above. I n  this connection, we should note that the collapse could be signalled by a 
temporary increase of Fr ,  since (according to (22)) such an event may occur with a 
sharp decrease of L, (see (13)), with ( u 2 )  remaining smooth. Runs at larger N evolve 
towards lower values of Fr ,  but with Fr( t )  decreasing more strongly with t (as t + co) 
than shown in figure 7. Also a t  larger N ,  Fr(t) tends to execute a damped oscillation 
as a function of t .  

3.2.3. Energy and transfer spectra 
I n  figure 8, we present horizontal two-dimensional spectra Q1(Kh) for the buoyant 

(N = 0.98, run 1A) and non-buoyant case ( N  = 0, run OA), Q2(Kh) (run lA), and 
P(K,) (run 1A) at t = 3.88. Kh is the horizontal wavenumber 

Kh = (kt + k;);. (24) 

Q1(Kh) is the only non-zero spectrum for purely two-dimensional turbulence. The 
wave kinetic energy and potential energy are in rough equipartition throughout the 
wavenumber domain. However, the relative positions of P(K,) and G2(Kh) are 
changed if the energy is plotted a t  a different phase of the Brunt-Vaisala period. For 
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FIQWRE 6. (a)  Time evolution of the Kolrnogorov scale L, (-), the Ozmidov scale L, (---), 
the horizontal integral scale L, (----) defined by ( I Z ) ,  the vertical integral scale L, ( .  . . . . ) defined 
by (13) and the Thorpe scale (--.--.) defined by (19) for run IA. ( b )  Same as (a )  for run 1B. 

t 

the stratified case (run lA) ,  the vortex component dominates the large scales and the 
wave component the small scales. As mentioned by RMW, stratification seems to 
inhibit the spectral transfer of energy towards small scales, leaving less energy in the 
latter, increasing the vortex component slope in the inertial range, and inducing a 
weaker horizontal dissipation of this component. The stratification enhances the 
growth of the vortex-kinetic-energy largest scales. Furthermore, a comparison of the 
horizontal and vertical one-dimensional spectral distributions shows that each 
component dissipates its energy by vertical variability ; in the dissipative range, 
E(k,)  + E(k, ) ;  E = GI, G2 or P. 
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FIQURE 7. Froude number (see (22)) as a function of time for runs 1A (isotropic initial 
conditions), and 1B (vortex initial conditions). Timescale is the same as in figure 6. 
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FIGURE 8. -, horizontal two-dimensional spectra Gl(Kh), non-buoyant case (N = 0, run 
OA) ; ---, buoyant case (N = 0.98, run 1A); ----, G2(Kh) (run 1A) ; . . . . . , P(K,)  (run 1A). All 
at 3.88. K,, = ( k z f k : ) s ,  k, and k, are the horizontal wave vector components. 
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We next examine energy transfer spectra which give the time rate of change of 
energy spectra due to nonlinear interactions 

(i+2vk2) CPl(k, t )  = q ( k ,  t ) ,  

where the transfer function, Fl(k ,  t ) ,  corresponds to triple correlations coming from 
the nonlinear terms of (1).  Similar equations can be derived for CP,(k,t) and P(k ,  t ) ,  
but these involve spectral covariances of $-O in addition to triple correlations. For 
the latter, we need the quantity, 

P(k, t )  = ($,( - k,  t )  Q(k,  t ) ) .  (26) 

Fl involves (6, dl dl), (dl 4, dl), and (6, 4, 4,) terms, which correspond respec- 
tively to contributions due to vortex-vortex (vv), vortex-wave (vw), and wave- 
wave (ww) interactions. The formulation of these various interactions has been given 
by Riley (1985). We may then write 

Fl = F;" + F& + F&.. (27) 

The transfer function, F2(k , t )  in the equation of evolution of @,(k, t ) ,  can be 
decomposed in a similar way: 

F2 = 9-;w + F;w + YTv. (28) 

The following conservation properties can be analytically checked : 

In the following discussion, E(k)  stands for an isotropically accumulated spectrum 
and E(K,)  for a horizontal spectrum of E ( k )  (cf. RMW). The components of Fl(k) as 
given by (27) are shown in figure 9 (a, b)  a t  t = 8.76, for the non-buoyant case (N = 0, 
run OA), and for the buoyant case (N = 0.98, run 1A). We note the inhibition by 
the stratification of the spectral transfer towards small scales, confining the major 
part of the transfer to the smaller wavenumbers. Furthermore, the stratification 
reduces the amplitude of the contributions vwv and vww and changes the vww sign 
in the largest scales. The collapse is accompanied by a significant change of the 
vortex-vortex-interactions contribution compared to  the isotropic case ; after t , ,  vvv 
is enhanced by the stratification and becomes dominant. This remark applies also to 
the vvv contribution to Fl(kz) (k, = vertical wavenumber) (see figure lOa, b).  

By contrast, the contribution of vortex-vortex interaction to Fl(Kh) (figure 
11 a,  b )  has similar amplitude in the buoyant and non-buoyant cases. This strictly 
two-dimensional term resembles a two-dimensional energy transfer function, positive 
in the large energy-containing eddies (back tJansfer), similar to the one calculated by 
Herring et al. (1974). However, this resemblance is also true in the case of three- 
dimensional isotropic turbulence (cf. RMW). Furthermore, in vwv, the wave-vortex 
interaction strongly drains the stratified turbulence in the largest horizontal 
scales. 

3.2.4. Spatial structures of the three-dimensional field 

Figure 12 (a- f ) ,  isosurfaces of the total density field ~ ( z )  +p'(x, y, z, t ) ,  shows the 
spatial structure of the flow from t = 2.91 to 7.78, and illustrates the collapse. For the 
earlier time, we note complicated three-dimensional convoluting of the isosurface. At 
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FIGURE 9. (a )  Isotropically accumulated spectrum of the transfer function TI (see (25), (27)) for 
run OA. Here t = 8.76. ---, the contribution due to vortex-vortex interactions (T:"); ----, 
the contribution due to vortex-wave interaction (Y;") ; + . . . . , contribution due to wave-wave 
interaction (T;w). (6) Same as (a )  for run 1A. 

the time of collapse, the convolutions suddenly disappear. This corresponds to the 
break in the Thorpe-scale curve observed in figure 6 ( a ) .  From place to place, very 
sharp peaks signal strong wave-wave interactions. After the collapse, the flow is 
convectively stable everywhere, although some sharp peaks remain. 

3.3. Small-Froude-number regime 
We next examine a very small-Froude-number regime in order to understand 
possible universal aspects of the flow. We discuss three runs : the first examines the 



132 0. Mitais and J .  R. Herring 

O.oooO8 r I * I t r I ,  I r r 1 s  t r 

0.00006 - 

0.00004 - 

o.ooOo2 - 

(4 - 

.' ', ,\ ,, , . - .  . ,?.>.-.- 

o i ,  - \  ' .. ',,,;/j ,' ' J  \\ .: ) I ;  " 
- 0 . m 2  - \\\ :"f 

- 'I\ ; I 
-0.00004- \,\ ; 1 

- \ . I /  

\ I  
-0.oooO6- \ I 

Y , ,  , , ,  , I 1  I > I . _  

0 2 4 6 8 10 12 14 16 18 
-0.oooO8' ' ' 

20 

issue of equipartitioning between waves and turbulence (case A ) ;  the second 
examines the extent to which two-dimensional turbulence survives as Fr + 0 (case 
B) ; and in the third the system is initially entirely waves (case C). In all these cases, 
we vary the Brunt-Viiisiilii frequency to assess the dependence of the flow on this 
parameter. We could also examine the balance of initial conditions or introduce a 
wave damping in order to study vortical turbulence. However, in this case, as 
numerical calculations suggest, the wave component tends to zero as N +  03, so such 
refinements may not be necessary in the limit of large N .  

Runs 2A, 3A, and 4A parallel runs OA and 1A for three values of N = (27c, 47c, 207c), 
except that the initial potential energy is taken equal to zero. According to Hunt, 
Stretch & Britter (1988), the absence of initial density fluctuations increases the 
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FIQURE 11  (u, b). Same as figure 9 (a, b) but for horizontal two-dimensional spectra. 

initial oscillations in the potential energy and wave kinetic energy. However, we are 
interested here in long-term evolutions for which these zero initial conditions have no 
consequences according to our numerical studies. The initial Froude numbers are 
respectively 0.2, 0.1, and 0.02; the other runs parameters are given in table 1. 
61( t ) ,  62(t), and P ( t )  are shown in figure 13 for run 2A. These evolutions are similar to 
those observed in run 1A. Despite the strong oscillatory behaviour of the wave 
kinetic energy, the vortex kinetic energy does not exhibit any oscillations, a sign of 
weak interactions between the two components. Also, we may surmise that 
correctly identifies the non-wave component of the dynamics. Note that, starting 
from 61(to) = 6, ( to) ,P( to)  = 0, the system does not approach the symmetry of 
thermal equilibrium = 6, = P ) ,  but the energy remains equally divided between 
the vortex kinetic energy and the total wave energy (wave kinetic+potential 
energy). The equipartition between the two forms of energy is preserved when the 
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FIGURE 12. Isosurfaces of the total density field p(z)+p'(z, y, z ,  t )  for run 1A: (a) t = 2.91 ; 
( b )  3.88; ( c )  4.86; ( d )  6.84; ( e )  6.81; (f) 7.79. 

stratification is increased, and the total energy dissipation decreases with increasing 
stratification. However, the flow remains strongly dissipative. 

The equipartitioning noted above is a global property and does not hold in spectral 
detail. There is an excess of Q1 a t  large Kh and a deficit a t  small Kh. The converse 
holds for k,, with rough equipartitioning in the isotropic k energy-containing 
range. 

The weak interactions between waves and turbulence components is confirmed in 
figure 14a, b ) .  This shows Fl(Kh) and Fl(kz) for run 4A, a t  t = 3.93. The horizontal 
and vertical transfer functions of vortical energy are both dominated by the 
vortex-vortex interaction contributions. F:v(Kh) is concentrated in the very large 
scales, and is similar to a strictly two-dimensional transfer function. However, 
F:v(kz) is not small, and resembles a three-dimensional transfer function; it is 
negative in the large energy-containing eddies, and positive a t  higher wave numbers, 
indicating an energy cascade from large to small vertical dissipative scales. 

We next examine, in case B, &l(to) + 0, 6z(to) = .I"(to) = 0, and a three-dimensional 
distribution for GI. Runs 2B, 3B, and 4B correspond to N = (2x, 4x, 20x). In figure 
15, we plot 61(t), GZ(t) and P(t) for run 2B. After a transient phase in which 62 and 
P increase from zero, @1 tends to dominate. Part of # 2  observed here may be genuine 
gravity waves, and part may correspond to 'vortical' motions on a surface whose 
normal defines that component of vorticity conserved in Ertel's theorem ; we have 
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FIGURE 13. Sl(t) (----), 6,(t) (-), and P( t )  (. . . . . )  for run 2A (N = 2?r, isotropic 
initial conditions). 

here no tools to distinguish between these alternatives. The wave kinetic energy and 
potential energy exhibit parallel evolution, but during the initial transient phase the 
latter exceeds more and more the former as the stratification increases. This could 
indicate that during this initial phase, 62 created by the initial vortices does not 
correspond to waves but more to small-scale three-dimensional (non-buoyant) 
turbulence. 

In figure 16, we plot the ratio 61/(61 + 62 +P) as a function of the normalized time 
N(t-to). After an adjustment phase (of the order of 0.8N-I) during which the ratio 
decreases, the initial vortex motion remains dominant over the gravity-wave 
component at subsequent time, and the relative amplitude of the gravity-wave 
component decreases with increasing stratification. The flow becomes less dissipative 
with increasing N. However, although dominated by horizontal motion, it is not 
characterized by weak energy dissipation, as in two-dimensional turbulence. 

Figure 17(a, b )  is the analogue of figure 14(a, b )  for run 4B. The contributions of 
the vortex-wave and wave-wave interactions to .Fl(Kh) and Yl(kz) tend to zero as 
the stratification increases. S:,(K,) and S & ( k z )  are almost identical (in both shape 
and intensity) for runs 4A and 4B. Because of the importance of the vertical 
variability, it is of interest to examine the vertical wavenumber spectra Gl(kz), 
G2(kZ)  and P(k,)  figure 18, run 4B, t = 3.93) : Ql(k,) dominates a t  all scales. The low 
resolution does not allow us to determine if the vortex component vertical spectrum 
is consistent with the 'saturated ' wave-spectrum assumption scaling as N2ki3 .  The 
P(k,) spectrum is quite flat and tails off only because of diffusive effects, possibly 
suggesting sharp wave fronts. The comparison of the one-dimensional spectra 
Gl(kz) and Ql(ky) (figure 19, run 4B, t = 3.93) shows that the dissipation of the total 
energy is primarily attributable to the vertical variability of the vortex component. 
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FIGURE 14. (a)  Same as figure 11 (a )  for run 4A. (b )  Same as (a )  but for vertical one- 
dimensional spectra (kz, vertical wave vector component). 

k* 

Run 2C parallels runs 2A and 2B ( N =  2n), but with u(t = to)  projected onto 
e2($-l(to) = 0).  The initial density fluctuations also are taken equal to zero 
(P(t , )=O).  Figure 20 shows $ l ( t ) , 6 z ( t )  and P(t ) .  The energy remains wave 
dominated. The wave dominance increases a t  large t ,  just as in run 2B where the 
vortex dominance becomes stronger as t + co , This result is consistent with weakly 
interacting waves and turbulence. The bulk decay rates (i.e. total energies) for runs 
2A, 2B, and 2C (figures 13, 15, and 20) are strikingly similar. 
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FIGURE 15. Same as figure 13, for run 2B (N = 2x ,  vortical initial conditions). 
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FIGURE 16. Ratio @,/ (&,+@,+P)  as a function of the normalized time N(t - to ) .  
conditions: 1, run 1B (N  = 0.98) ; 2, run 2B (N = 2n) ; 3, run 3B (N = 4n) ; 4, run 

Vortical 
4B ( N =  

initial 
2On). 
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3.3.1. Frequency spectra 

The time series of, for example, density fluctuation are obtained a t  one point of the 
flow. They are then Fourier transformed and normalized to get potential-energy 
frequency spectra. Before describing detailed results, we remind the reader that the 
scope of our study is decaying flows for which power-spectra analysis may be suspect. 
The concern here is that decaying flow (whose variances are as in figure 5 )  are not 
suitable for examining power-spectral issues, for which, a t  least ideally, stationary 
conditions are required. However, we may readily establish, numerically that, for a 
time series of length comparable with ours, with several discrete frequencies (i.e. 
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FIGURE 18. One-dimensional vertical spectra of (---), G2 (----), and P ( .  . . . . )  
for run 4B. 

FIGURE 19. One-dimensional spectra @l(kJ (-) and G1(kz) (---) for run 4B. 
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t 

FIGURE 20. Same as for figures 13 and 15 for run 2C ( N =  2 ~ ) .  Gz(to) is the same as run ZA, but 
Gl(t0) = 0 : 'wave ' initial conditions. 

N 10) and with a variance decaying as t - (n 1.8--2.0) (see figure 5 ) ,  there is no difficulty 
in picking out the frequencies (from the power spectra) comprising the signal. As 
n --z 00,  low-frequency power increases, but only as a continuous background. 

Figure 21(a-c) shows plots of the power spectra, P ( w )  for runs 2A, 2B and 2C 
(w is here the frequency normalized by N ,  and N = 2 ~ ) .  The figure shows the power 
spectra of the t 2 10 part of the data, which were judged to be relatively free from 
the initial transient. The three spectra exhibit discrete spectral peaks extending from 
near the Brunt-Vaisala frequency (slightly below for run 2C) down to about 0.W 
a t  the lower frequency end. The location of these peaks (there are about eight of them 
visible) seem to be about the same for all the runs. For w > 1, the power spectra drop 
abruptly. The approximately wP2,w 3 1 part of the spectra results from the finite 
length of the time series, and not from any physical mechanism. 

The characteristics of these spectra, the elevated spectral activity extending from 
about 0.2 up  to 1 with an abrupt drop above, are also common features of frequency 
spectra obtained from oceanographic data (e.g. Voorhis 1968; Gould 1971 for 
instance). 

The subharmonic excitations seen here are probably attributable to nonlinear 
interactions combined with the phase-locking tendency of dissipation. However all 
that we may establish with certainty is that the linear terms in the equations of 
motion, integrated from random initial conditions, would have power spectra much 
richer (i.e. many more discrete frequencies) that those of figure 21. To see this, we 
consider (1)-(3) utilizing the representation (5), with nonlinear terms discarded. The 
resulting initial-value problem has wave solutions whose frequency density exceeds 
that shown in figure 21 (a-c) by a factor of at least 10. (The frequency density is just 
the resonance frequencies of a cavity for gravity waves, whose density of states 
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FIQURE 21. Frequency spectra of the potential energy P(w)  for: (a )  run 2A, ( b )  2B and (c )  2C. 
The frequency w is normalized by N (N = 271). 
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FIGURE 22. Vector plots of u(z,  y, z )  for (z, %)-slice a t  the mid planes of the flow. t = 3.88 
(a )  run 2A; ( b )  2B; (c) 2C. 
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corresponds to a 643 cubical box.) Moreover, power spectra for runs (3A, 3B) and 
(4A, 4B), with N = 4n, 201t do not show an increased density of excitations in the 
power spectra. 

For run 2R (vortical initial conditions), the low-frequency excitation is pro- 
nounced, although the time record is too small to compare there results with a 
possible w-2 slope analytically introduced by Garrett & Munk (1972) and commonly 
observed in the ocean. (In any case, comparisons with oceanic data are limited 
because of the absence of rotation in the numerical model.) The lowest frequencies 
(for case B) seem to be attributable to the GI turbulence. 

It is of interest to note that a t  small w and for vortex initial conditions, P ( w )  
exceeds the vertical kinetic-energy power spectrum by about an order of magnitude, 
a t  least for the vortical initial condition. (For brevity, we do not show the latter 
spectra.) This result survives high-pass filtering and is qualitatively similar to the 
oceanographic results (Gould 1971), although we stress again that the present results 
are for non-rotating flows. 

3.3.2. Spatial structure of the $ow 
Figure 22 (a-c) shows vector plots of u for a vertical slice of the flow, and for runs 

2A, 2B, and 2C (N = 27r, t = 3.88). Figures 22 (a )  and 22 (b )  look similar, except for 
some vertical eddies due to the higher proportion of G2 energy in the first case. When 
the initial field is constituted only from vortex motion (run 2B), the horizontal 
motion clearly dominates, and some definite patches are visible. When the flow is 
dominated by the waves, the vertical motion is much more pronounced. 

3.3.3, Distribution function for shear 
Since the stability of the flow against vertical overturning is set by some measure 

of vertical shear, it is of interest to compare the distribution function P ( x ) ,  x = au /az  
for stably stratified flow and isotropic turbulence. Figure 23 compares the P(au/az) 
for cases OB and 4B; i.e. N = (0,  OX), vortex initial conditions. The unstratified 
case has, a t  the time shown (t  = 3.88), become essentially isotropic a t  all 
wavenumbers. For these curves, ( (au/az)2)i = (1  .OO, 3.00) for cases (OB, 4B), 
respectively. Thus for case 4B, Ri - 400 (as computed by (21)) is extremely large, 
indicating strong stability. A striking feature of the isotropic turbulence 9’ is the 
near-exponential range extending from au/az - 1 .O to values such that no resolution 
remains. We have remarked earlier (Herring & MBtais 1989) on the apparent 
ubiquity of such distributions, but the context of our findings there was a special 
two-dimensionally forced problem, and the present case of decaying turbulence 
seems cleaner. But in the more general context, we should note that the exponential 
distribution occurs for convection (Castaing et al. 1989), quasi-geostrophic turbulence 
(McWilliams 1989), and has been observed for structure functions and vorticity in 
isotropic turbulence (Anselmet et al. 1984; Yamamoto & Hosokawa 1988). 

With regard to  the approximate exponential distribution, we should note that the 
qualitative differences of these curves from Gaussian (with the same variance) is 
consistent with the tendency of flows to develop strong gradients in small spatial 
regions, with quiescent regions (small gradients) becoming the more likely result of 
a random sampling. This indicates an intermittency, but we do not see here strong 
evidence of coherent structures, such as values of kurtosis (for vorticity, or 
temperature) significantly larger than their Gaussian value (3.0). Castaing (1989) has 
recently suggested that the almost exponential shape is derivable from a log-normal 
distribution of the dissipation of turbulent patches, with the distribution of the 
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x = au/ax 

FIQUKE 23. Probability distribution density Y ( z ) , x  = au/az,  for cases OB and 4B. For these, 
((au/az)z))i is 1.0 and 3.0 for OB and 4B respectively. Kote that using (21) for Ri, Ri - 400 for 
case 4B: overturning instability occurs nowhere, if (21) is a valid criterion for its detection. 

intensity of each patch Gaussian. We note that the distribution need not to be so 
exotic as iog-normal : in fact an exponential distribution of variance squared would 
result in a strict exponential. 

4. Conclusion 
Summarizing the results for ‘weakly stratified ’ flows, which are here compared to 

laboratory experiments, we see overall, for statistical parameter such as lengthscales 
and gross energetics, qualitative agreement between the direct numerical simulation 
and the laboratory experiments. This suggests that  the direct numerical simulations 
have a satisfactory degree of realism, for most quantities examined. The exception 
is the heat flux, shown in figure 3. We observe in the direct numerical simulation the 
familiar damped oscillations about zero, qualitatively the same as in the laboratory 
experiments. However, in the numerical simulation the earliest excursion of (w0) 
exceeds the laboratory measurements by about a factor of 2. This may well be a 
consequence of the Prandtl-number differences (g = 1 for the numerical simulation, 
and rr x 200 for the laboratory experiment). We have checked that increasing v by 
a factor 2 with the same value of K decreases the transient excursion but, as noted 
in the introduction, rr = 200 a t  R, = 40 is beyond the range of present computations. 
Furthermore, the heat flux measured recently in the stratified wind-tunnel grid- 
turbulence experiments for air (Pr = 0.7) by Lienhard (1988) is closer to the 
numerical simulation than that of Itsweire et al. (1986). This trend also fits with the 
observation that increasing rr decreases the transient excursion. 

Comparing (for the numerical simulations) stratified flows with ‘equivalent ’ 
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unstratified flows, perhaps the most striking difference is that the former exhibits a 
much smaller transfer to small scale than the latter (cf. figure l l a ,  b) .  This reduction 
in transfer is in the high (horizontal) wavenumber ; i t  is largely a diminution in the 
contribution of small-scale wave-vortex interaction to the vortex transfer function. 
(On the other hand, the vertical transfers (k,) due to vortex-vortex interaction 
actually increase somewhat with N ,  see figure 10a, b.) This reduced small-scale 
transfer is responsible for the fact that as N increases, the vortex energy a t  small 
scales decreases (see figure 8). 

For N + 0 the horizontal integral scale L, increases with time much faster than the 
vertical integral scale L, (see figure 6 a  and (12) and (13)). For unstratified flows, both 
lengthscales increase a t  a rate intermediate between L,  and L, for the stratified case. 
The behaviour of L, would seem to correspond to the energy transfer of vortex 
energy into the large scales. 

The nature of the collapse phase of the turbulence is perhaps best illustrated in 
terms of the behaviour of the Thorpe scale (see (19) for a definition), which, according 
to figure 6 ( a )  shows a precipitous drop a t  Nt x 6. We note from figure 12(a-f) that 
at this time, convolutions in the isothermal surfaces also disappear. This is the same 
time a t  which the Ozmidov, Kolmogorov, and Thorpe scales become equal (also 
shown in figure 6a) .  Finally, a t  this time, @,(t) for N = 0.98 breaks away from the 
unstratified Q1 curve (see figure 5 ) .  The collapse time (Nt, x 6) and the corresponding 
Froude number (Fr z 0.25) seem to be in accord with the experiments (cf. Hopfinger 
1987). The structures that developed after the collapse are not ‘coherent’ structures 
in the sense, that, for the latter, the kurtosis of temperature or vorticity is much 
larger than the Gaussian value of 3. In  any case, much higher resolutions may be 
required for such structure to develop (MeWilliams 1984). 

The calculations of $3.3 indicate a lack of universality for strongly stratified, 
dissipative turbulence. Although we note that initial data containing only horizontal 
motions (case B) do tend to be dominant a t  strong stratification, the frictional effect 
associated with vertical variability causes the net energy transfer to be three- 
dimensional. Hence, the flow has a strong dissipation, atypical of two-dimensional 
turbulence. Other initial conditions, either wave (case C) or equipartition (case A), 
survive even in strong stratification and for a long time. This indicates initial-value 
dependence which seems beyond the scope of simple inviscid equipartitioning ideas. 
These results are similar to those found in shallow-water equations by Farge &, 
Sadourny (1989). Perhaps these results should not be surprising, in view of the 
multiple equilibria frequently noted in dynamical systems. 

I n  our discussions of waves and turbulence, we designated ‘stratified turbulence ’ 
and q52 ‘waves ’. Such a description is clearly inadequate ; it not only leaves out 0 
(and its possible wave-like phase relationship to $2), but also any mention of wave- 
like oscillations of the (q52,  @) degrees of freedom. Despite this over simplification, we 
note that in practice the vertical vorticity (z g51) shows little of the (w x N) 
oscillations characteristic of ( q 5 2 , @ ) .  This suggests not only that the flow quickly 
reaches a state in which (cPl ,  #2)  are good first-order discriminators between waves 
and turbulence, but also that there is, a t  small Pr, little effective interaction between 
waves and turbulence. This fact is made more dramatic if we recall that for 
unstratified turbulence r,b2) are equipartitioned in about one-eddy circulation 
time. 

Our results here for strongly stratified flows, and for those runs for which the 
vortical component dominates, may be usefully discussed in the light of Lilly (1983). 
We recall that Lilly’s proposals consisted of two essential ideas. The first is that small- 



146 O.Mdais and J .  R. Herring 

Fr flows, and their observed strong two-dimensionality, may be understood in terms 
of a Fr + O  scaling analysis of the equations of motion similar to that introduced by 
RMW. Such a n  analysis yields (in addition to buoyancy waves) two-dimensional 
turbulence in vertically decoupled layers. The second idea is that as time proceeds, 
these layers lose their initial coherence, much as strictly two-dimensional turbulence 
loses predictability. As in the predictability problem, the smallest vertical scales of 
an initially vertically coherent flow will decorrelate first and the decorrelation then 
spreads to larger scales. (The r.m.s.) vertical variability increases until limited by the 
outbreak of three-dimensional dynamical mixing. The latter effects are beyond the 
low-Fr scaling analysis, a t  least to the order examined in detail by RMW or Lilly 
(1983). It may be that the higher-order ‘balanced’ analysis of McWilliams (1985) is 
able to give a suitable coupling of the gravity component to the two-dimensional 
turbulence equations. 

Given the general validity of Lilly’s picture for the near two-dimensional, Fr + 0 
limit, there remains the question : do the present results display the degree of vertical 
overturning needed to  ‘glue ’ the two-dimensional layers together ? Clearly, for the 
strongest stratifications investigated (cases 4A and 4B), we see little evidence of 
overturning. On the other hand, if the results of figure 23 indicate the (extremely 
strong) stability of this flow, then, for this case, Lilly’s picture is plausible with 
viscous dissipation (by vertical shear), instead of vertical overturning, removing the 
energy of the two-dimensional flow. This would explain the impression that the flow 
is strongly dissipative, despite the fact that it is strongly two-dimensional. We recall 
in this connection that our @,(kc)-spectrum shows no trace of a power law, as would 
be expected if some form of nonlinear effects were determining its shape at low k,. 
Moreover, our previous results for forced stratified turbulence (Herring & MBtais 
1989) did show a kL3 spectrum for scales below the forcing wavenumber. This would 
imply that much larger R, must be simulated before the atmospheric conditions 
envisioned by Lilly arc reached. 

We are grateful to M. Lesieur, J. C. McWilliams and J. J. Riley for many 
enlightening discussions. These computations were carried out a t  the Pittsburgh 
Supercomputer Center. Computing resources were supplied by a grant from the 
OASC of the National Science Foundation. Part of this work was done when 0. MBtais 
was an ASP postdoctoral fellow a t  NCAR. NCAR is sponsored by the National 
Science Foundation. 
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